A good deal of attention has been focused in recent years on the role of chloride ion transporting pumps in epilepsy. This is because Cl⁻ cotransporters (other ions, depending on transporter type, are moved in concert with Cl⁻) set the level of intracellular Cl⁻ concentration ([Cl⁻]i) in neurons and hence determine the effectiveness of GABAergic inhibition. The K⁺/Cl⁻ cotransporter KCC2 performs most of the work in setting intracellular Cl⁻ concentration, moving Cl⁻ out of the neuron against its electrochemical gradient to maintain [Cl⁻]i that is lower than the [Cl⁻] in the extracellular space.

Much has been written about the developmental changes in KCC2 expression and the mirror-image changes in the Na⁺/K⁺/Cl⁻ cotransporter NKCC1 (1). NKCC1 essentially opposes the action of KCC2, establishing high levels of [Cl⁻]i. NKCC1 expression is high during development while KCC2 levels are low, thus the resulting high [Cl⁻]i leads to depolarizing GABAergic IPSPs in the immature nervous system, opposite to the hyperpolarizing effect of IPSPs in maturity. Because of this situation, antiepileptic drugs acting on GABAA receptors might paradoxically increase excitation in infants with seizures (2).

Outside of the early developmental period when NKCC1 expression predominates, how KCC2 function and expression relate to epilepsy has been less well examined. Several studies have shown that KCC2 expression is decreased in both human temporal lobe epilepsy (3) and in animal models of epilepsy following provoked status epilepticus (SE) (4). Understanding how KCC2 cotransporter expression is lost following SE might be important for clarifying both a key process during epileptogenesis and how GABAergic inhibition loses its efficacy during a prolonged seizure. The current study by Lee and colleagues establishes just such a mechanism for KCC2 downregulation during seizures, implicating loss of phosphorylation of the KCC2 molecule as a key mediator. Although this might seem an arcane topic of investigation, in fact their findings join a number of recent publications highlighting altered phosphorylation signaling as one of the important cellular processes underlying ion channel dysfunction in epilepsy (5 – 9).

The experiments in this study were conducted in a reduced system using cultured neurons. Lee and colleagues began by demonstrating that exposure of neurons to exogenous glutamate, at a concentration that might be seen during a seizure, converted the normally hyperpolarizing response to GABA application to a depolarizing or purely shunting (minimal voltage change despite an increase in conductance) response. This loss of GABAergic inhibition was associated with a change in the GABA reversal potential that was largely dependent on the loss of KCC2 function. Protein phosphatase 1 mediated the dephosphorylation events of Ser940 that coincided with a deficit in hyperpolarizing GABAergic inhibition resulting from the loss of KCC2 activity. Blocking dephosphorylation of Ser940 reduced the glutamate-induced downregulation of KCC2 and substantially improved the maintenance of hyperpolarizing GABAergic inhibition. Reducing the downregulation of KCC2 therefore has therapeutic potential in the treatment of neurological disorders.

NMDA Receptor Activity Downregulates KCC2 Resulting in Depolarizing GABA₄ Receptor–Mediated Currents.

KCC2 is a neuron-specific K⁺-Cl⁻ co-transporter that maintains a low intracellular Cl⁻ concentration that is essential for hyperpolarizing inhibition mediated by GABA₄ receptors. Deficits in KCC2 activity occur in disease states associated with pathophysiological glutamate release. However, the mechanisms by which elevated glutamate alters KCC2 function are unknown. The phosphorylation of KCC2 residue Ser940 is known to regulate its surface activity. We found that NMDA receptor activity and Ca²⁺ influx caused the dephosphorylation of Ser940 in dissociated rat neurons, leading to a loss of KCC2 function that lasted longer than 20 min. Protein phosphatase 1 mediated the dephosphorylation events of Ser940 that coincided with a deficit in hyperpolarizing GABAergic inhibition resulting from the loss of KCC2 activity. Blocking dephosphorylation of Ser940 reduced the glutamate-induced downregulation of KCC2 and substantially improved the maintenance of hyperpolarizing GABAergic inhibition. Reducing the downregulation of KCC2 therefore has therapeutic potential in the treatment of neurological disorders.
Dephosphorylation Proves Detrimental to GABAergic Inhibition

ment of a phosphate group by protein kinases. Such “posttranslational” phosphorylation is a ubiquitous cellular mechanism for altering the properties of proteins. In this case, the loss of Ser940 phosphorylation (dephosphorylation) was attributed to the action of a phosphatase, protein phosphatase 1 (PP1). When PP1 was pharmacologically blocked, glutamate exposure produced a much smaller effect on GABAergic transmission. Thus, the authors put forward a model in which intense neuronal activity, such as occurs during a seizure or SE, leads to intracellular activation of PP1, which strips away the phosphate group on a single serine residue on KCC2. This in turn leads to the rapid degradation of KCC2 protein and partial loss of the all-important low [Cl−]i that enables GABAergic inhibition.

These findings are compelling for several reasons. The first is that this manuscript represents a clear distillation of pathologically altered synaptic physiology to loss of phosphorylation at a single amino acid residue—an elegant demonstration of reductionist biology. But more importantly, these findings join a number of other recent studies (some by the same laboratory group) that identify altered phosphorylation signaling as a key pathologic process in epilepsy. For example, the stability of GABA\textsubscript{A} receptors in the neuronal plasma membrane becomes altered during prolonged seizures, leading to their internalization and loss of function, a process mediated by dephosphorylation of specific GABA\textsubscript{A} subunits (5). A similar process mediated by increased phosphorylation of A-type K+ channels follows SE and, as with GABA\textsubscript{A} receptors, leads to their internalization and increased neuronal excitability (6). Chronic loss of phosphorylation signaling occurs in the pilocarpine model of epilepsy, accounting for the loss of function of the hyperpolarization-activated cation (HCN) channel, which also contributes to hyperexcitability (7). Kindling epileptogenesis has been shown to depend on the activation of the receptor tyrosine kinase TrkB (8). And it is hyperactivity of the phosphorylation pathway mTOR that underlies the manifestations of the genetic disorder tuberous sclerosis (9).

These numerous lines of evidence suggest that phosphorylation signaling can be altered on time scales ranging from minutes to months following neurologic insults, or permanently in the case of inherited syndromes, with significant effects on ion channel and transporter function. Given the importance of phosphorylation signaling in cellular regulation and the fact that there are more than 500 different protein kinases identified in humans, it should not be surprising that numerous altered pathways have been thus far described in epilepsy. Yet this emerging and somewhat complicated area of investigation offers hope for therapeutic interventions: protein kinases have proven to be fruitful targets for drug development, with about half of all current pharmaceutical new drug development in this category (10). As new altered phosphorylation pathways in epilepsy are discovered, specific drugs to reverse those changes will be available. This will allow testing of whether the reversal of pathologic phosphorylation signaling brought on by neural insults will retard the development of epilepsy or possess antiepileptic properties. The findings of the current manuscript, of course, are a long way from that future promise: they simply represent a proof of concept in a reduced cellular system that has not been tested at the level of an animal model. Nevertheless, these results underscore the importance of phosphorylation signaling in neuronal excitability and its possible future relevance to epilepsy therapeutics.

by Nicholas P. Poolos, MD, PhD

References

Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. Identifying information.
 Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. The work under consideration for publication.
 This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. Relevant financial activities outside the submitted work.
 This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (DGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

 Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

 For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. Other relationships
 Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
Section #1 Identifying Information

1. Today’s Date: 12/15/11

2. First Name Nicholas Last Name Pools Degree MD, PhD

3. Are you the Main Assigned Author? Yes No

If no, enter your name as co-author:

4. Manuscript/Article Title: Dephosphorylation proves detrimental to GABAergic inhibition

5. Journal Issue you are submitting for: 12.1

Section #2 The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.
** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td></td>
<td></td>
<td></td>
<td>Univ. of WA</td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td></td>
<td></td>
<td></td>
<td>NIH</td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td></td>
<td></td>
<td></td>
<td>various</td>
<td>academic honoraria only</td>
</tr>
<tr>
<td>7. Payment for manuscript preparation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑️ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:

Thank you for your assistance.
Epilepsy Currents Editorial Board