In Basic Science

Commentary

The dentate gyrus (DG) is thought to serve as a “gate,” limiting the flow of excitation through the hippocampus. During epileptogenesis, adult-generated granule cells (DGCs) form aberrant neuronal connections with neighboring DGCs, disrupting the dendate gate. Hyperactivation of the mTOR signaling pathway is implicated in driving this aberrant circuit formation. While the presence of abnormal DGCs in epilepsy has been known for decades, direct evidence linking abnormal DGCs to seizures has been lacking. Here, we isolate the effects of abnormal DGCs using a transgenic mouse model to selectively delete PTEN from postnatally generated DGCs. PTEN deletion led to hyperactivation of the mTOR pathway, producing abnormal DGCs morphologically similar to those in epilepsy. Strikingly, animals in which PTEN was deleted from ≥ 9% of the DGC population developed spontaneous seizures in about 4 weeks, confirming that abnormal DGCs, which are present in both animals and humans with epilepsy, are capable of causing the disease.

Excessive Activation of mTOR in Postnatally Generated Granule Cells Is Sufficient to Cause Epilepsy.

The dentate gyrus is hypothesized to function as a “gate,” limiting the flow of excitation through the hippocampus. During epileptogenesis, adult-generated granule cells (DGCs) form aberrant neuronal connections with neighboring DGCs, disrupting the dentate gate. Hyperactivation of the mTOR signaling pathway is implicated in driving this aberrant circuit formation. While the presence of abnormal DGCs in epilepsy has been known for decades, direct evidence linking abnormal DGCs to seizures has been lacking. Here, we isolate the effects of abnormal DGCs using a transgenic mouse model to selectively delete PTEN from postnatally generated DGCs. PTEN deletion led to hyperactivation of the mTOR pathway, producing abnormal DGCs morphologically similar to those in epilepsy. Strikingly, animals in which PTEN was deleted from ≥ 9% of the DGC population developed spontaneous seizures in about 4 weeks, confirming that abnormal DGCs, which are present in both animals and humans with epilepsy, are capable of causing the disease.

Given the potential significance of this finding, this study was thorough in including a number of control experiments to evaluate for alternative interpretations and mechanisms. The incidental inactivation of PTEN in inhibitory granule cells in

TOR-ing Down the Dentate Gate in Temporal Lobe Epilepsy

Epilepsy Currents, Vol. 13, No. 6 (November/December) 2013 pp. 260–261 © American Epilepsy Society
olfactory bulb (which share the same genetic promoter as hippocampal granule cells used to drive PTEN inactivation) had surprisingly little effect on the morphology of these olfactory granule cells, as well as no evidence of abnormal EEG activity in the olfactory bulb. Although mTOR activation in astrocytes can promote epileptogenesis in mouse models of tuberous sclerosis complex (5), there were no significant abnormalities in the number, morphology (e.g., reactive gliosis), or PTEN expression of astrocytes in the \emph{PTEN} knock-out mice in this study. Thus, the source of epileptogenesis in these mice can most likely be localized to the DG granule cells.

Although the findings from this study support the concept that abnormalities in DG granule cells are capable of causing epilepsy, the specific pathophysiological defect(s) in the DG granule cells that promote epileptogenesis in the \emph{PTEN} knock-out mice remains to be determined. Consistent with pathological specimens from human patients and other animal models of temporal lobe epilepsy, a variety of histological abnormalities in DG granule cells were identified in the \emph{PTEN} knock-out mice and could potentially contribute to a breakdown of the DG gate leading to epilepsy. Based purely on the correlative pathological observations in the current and previous studies, it is impossible to distinguish which granule cell abnormalities are more critical for epileptogenesis and which may be compensatory mechanisms or epiphenomena. However, unlike most of the other morphological abnormalities in DG granule cells, the degree of mossy fiber sprouting was poorly correlated with the presence or absence of \emph{PTEN} inactivation. Thus, while mossy fiber sprouting has been a longstanding, leading candidate hypothesized to promote excitatory recurrent circuits in temporal lobe epilepsy, this finding supports other recent studies indicating that mossy fiber sprouting may not be necessary for epileptogenesis in temporal lobe epilepsy (6).

Finally, proving that pathological abnormalities in DG granule cells are sufficient to cause epilepsy does not prove that these abnormalities are necessarily involved in temporal lobe epilepsy, especially in other models or the human condition. More targeted future approaches—selectively reversing specific aspects of DG granule cell dysfunction—will be needed to determine whether and which of these abnormalities are truly necessary for epileptogenesis in this and other models. Similarly, with regard to the involvement of the mTORC1 pathway in epileptogenesis, this and other recent studies provide strong evidence that mTORC1 hyperactivation is sufficient to cause epilepsy (7,8), but further work is needed to determine the conditions under which abnormal mTORC1 activity is necessary for epileptogenesis in acquired temporal lobe epilepsy. mTORC1 may have numerous downstream effects relevant to epileptogenesis and has been implicated in a variety of different models of epilepsy (4). Although in the present study, mTORC1 activation was used primarily as a tool for triggering epileptogenesis and DG granule cell dysfunction, the mechanistic link between mTORC1 and morphological properties of neurons, such as DG granule cells, may be critical for other types of epilepsy beyond the classic mesial temporal lobe epilepsy.

\textit{by Michael Wong, MD, PhD}

References

Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. Identifying information.
 Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. The work under consideration for publication.
 This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party — that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. Relevant financial activities outside the submitted work.
 This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

 Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

 For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. Other relationships
 Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
American Epilepsy Society
Epilepsy Currents Journal
Disclosure of Potential Conflicts of Interest

Section #1 Identifying Information

1. Today’s Date: 1/2/2013

2. First Name Michael Last Name Wong Degree MD, PhD

3. Are you the Main Assigned Author? ☒ Yes ☐ No

If no, enter your name as co-author:

4. Manuscript/Article Title: “TOR”-ing Down the Dentate Gate in Temporal Lobe Epilepsy

5. Journal Issue you are submitting for: 13.6

Section #2 The Work Under Consideration for Publication
Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.
** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Consultancy</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>7. Payment for manuscript preparation</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:
Thank you for your assistance.

Epilepsy Currents Editorial Board