INTRODUCTION
Alterations in inhibition have been suggested as an underlying cause of epilepsy (1, 2). Local GABAergic interneurons provide much of the inhibition in the cerebral cortex, hippocampus, striatum, and amygdala. Disruptions in neural development—whether genetic, chemical, or physical—can impair interneuron ontogeny, leading to the evolution of unstable neural networks and, ultimately, seizures. Over the past two decades, several animal models of interneuron disruptions have been described that displayed abnormal electroencephalogram activity and seizures, similar to human epilepsies.

Initial genetic studies examined the effects of loss of the specific neurochemical markers that identify the interneuron subpopulations. In the cerebral cortex, the main populations express the calcium binding proteins parvalbumin (PV) and calretinin (CR) or the peptide somatostatin (SST). The calcium-binding protein calbindin (CB) is often used as a marker for embryonic GABA interneurons because PV expression is delayed until the third postnatal week, and most PV cells also express CB. CR and SST are expressed in the embryo and present in GABA interneurons at birth. Mice with null mutations in CB, PV, or calretinin (CR) are largely normal, without behavioral or seizure phenotypes (3). Loss of the gene encoding SST did not alter overall anatomy or prompt spontaneous seizures (4). SST neurons often are immunoreactive for neuropeptide Y (NPY), and in recordings from hippocampal slices, exogenous NPY suppresses excitatory neurotransmission, blocking induced epileptiform activity. Mice lacking NPY presented with mild spontaneous seizures during the adolescent period, followed by remission in the adult. Adult NPY-null mice show increased sensitivity and poorer outcomes after chemically induced seizures (5, 6). Thus, the inability to express certain biochemical markers itself can lead to seizure phenotypes.

However, many of the embryonic perturbations that lead to seizures directly affect the generation, migration, and maturation of the GABAergic interneurons. This review is focused on the interneuron ontogeny and disruptions that manifest as epilepsy in animal models. The underlying mechanisms and molecular pathways will be explored and, where possible, translated into the known basis of human neurological disorders. The final section presents the newest research concerning strategies for correcting the insufficient inhibition and providing long-term cures for epilepsies.

Generation and Specification of Forebrain Interneurons
The majority of local GABAergic interneurons of the forebrain are generated in the embryonic striatum in a group of structures known as the ganglionic eminences (GEs) (7) and in the embryonic preoptic area (8–11). The GABAergic interneurons are generated over a prolonged period starting during midgestation (approximately embryonic days (E) 10–17 in the rodent (12, 13) and gestational weeks 10–25 in the human (14)), giving a large window of prenatal susceptibility. The interneurons synthesize GABA using the constitutively expressed glutamic acid decarboxylase 67 (Gad67, encoded by the Gad1 gene) or the inducible glutamatic acid decarboxylase 65 (Gad65, encoded by the Gad2 gene). Null mutants of Gad1 and Gad2 were generated in the last century. Mice with total loss of Gad1 die shortly after birth, most likely due to respiratory failure (15), whereas the removal of both Gad2 alleles (Gad2−/−) is compatible with life, although these mice experience handling and stress-induced seizures and increased mortality (16).
GABAergic interneurons are classified by the expression of biochemical markers, calcium-binding proteins or peptides, their morphology, and electrophysiological characteristics (17, 18). The medial ganglionic eminence (MGE) is the source of PV- and SST-expressing interneurons that are found in the cerebral cortex, hippocampus, and dorsal striatum (10). The lateral ganglionic eminence (LGE) supplies GABAergic interneurons to the olfactory bulbs, as well as generates the medium spiny GABA projection neurons of the striatum (10, 19). Finally, the caudal ganglionic eminence (CGE) is the origin of the CR and vasoactive intestinal peptide (VIP) expressing interneurons and the PV and SST interneurons of the amygdala and the caudalmost cerebral cortex (11). The somatostatin-expressing cells can be further grouped in the cholecystokinin (CCK) and NPY subgroups (20, 21).

The expression of the transcription factors Dlx1 and Dlx2 is critical for production of the GABAergic cells in the GE proliferative zone. Loss of both Dlx1 and Dlx2 drastically reduces the size of the GE and thus the numbers of GABAergic neurons observed at birth (7, 22). The Dlx1/2 null mice die shortly after birth, and the survival of the Dlx1+/− mice is dependent upon the background strain (23). About 50% of the resulting Dlx1+/− mice are able to survive to adulthood (24). Within the first 2 weeks after birth, the GABAergic interneuron profiles in the Dlx1+/− mice were similar to wildtype, suggesting normal generation and migration. After 1 month of age, there was a marked reduction in Gad67-expressing cells throughout the cerebral cortex and the hippocampus. Immunohistochemistry analysis showed that the CR, NPY, and SST interneurons were decreased, whereas the PV cells were largely unaffected. Cell death assays imply that reduced interneuron numbers in the Dlx1−/− mice are due to cell loss rather than downregulation of GABA expression. Transplantation of Dlx1−/− interneurons into a control cerebral cortex demonstrated fewer SST and NPY cells. The remaining interneurons had abnormal morphologies, supporting additional roles for Dlx1 in interneuron maturation and survival.

Recordings from slices of Dlx1−/− mouse hippocampus and neocortex showed reductions in the frequency and amplitude of inhibitory postsynaptic currents (IPSCs), starting at 1 month and progressing with age. The Dlx1−/− mice were more susceptible to handling and stress-induced seizures, with nearly 75% showing behavioral seizures. Simultaneous video-EEG monitoring revealed generalized spike and slow-wave discharge events, progressing to high-frequency discharges and myoclonic movements. In humans, polymorphisms located near DLX1 and DLX2 genes have been associated with autism susceptibility (25). Considering the comorbidity of autism and epilepsy—as great as 40% in some populations—future studies may discover additional DLX1 and DLX2 variants directly connected to seizure disorders.

As transcription factors, Dlx1 and Dlx2 regulate gene transcription to specify interneuron cell fate and identity. Among the characterized targets are Dlx5 and Dlx6 (7), Wnt5a (26), Arx (27), and Zfhx1b (also known as Sip1 or Zeb2) (28). Wnt5a appears to regulate the expression of GABA, particularly in interneurons of the olfactory bulb (26). While members of the Wnt/β-catenin family have distinct roles in brain development and seizures, a direct link between Wnt5a and epilepsy has not yet been found. By contrast, a genetically targeted loss of a zinc-finger homeobox transcription factor Zfhx1b mimics Mowat–Wilson syndrome, a disorder characterized by intellectual disability, epilepsy, and craniofacial and enteric nervous system defects (28). Conditional deletion of Zfhx1b in regions that express Dlx1/2 (or Nkx2.1) led to a fate change in the interneurons (29). In the absence of Zfhx1b (Sip1), fewer cortical interneurons were generated and located dorsally in the embryonic forebrain (28, 29). At postnatal day (P) 15, PV and SST cells in the cerebral cortex were reduced by more than 80%, whereas in the striatum, PV cell numbers were reduced by half, and SST and NPY interneurons were increased by about twofold (28).

In addition to the Dlx family of transcription factors, Nkx2.1 and Mash1 define molecular pathways that regulate GABAergic interneuron ontogeny (30). Nkx2.1 is expressed only in the MGE, the major source of the cortical PV and SST interneurons. While the Nkx2.1−/− mice die at birth, conditional deletion in specific interneuron subpopulations has revealed a role for Nkx2.1 in epilepsy, dependent upon the time of deletion (31). Pups born with Nkx2.1 deletion at E9.5 were viable until postnatal day 10; those with the Nkx2.1 deletion at E10.5 lived until postnatal days 13–17; finally, mice with Nkx2.1 deletion at E12.5 were viable past postnatal day 30. Mice with deletions at E9.5 and E10.5 presented with overt spontaneous behavioral seizures, including violent tremors, followed by prolonged periods of inactivity. EEG recordings showed abnormal interictal discharges followed by continuous spike-wave rhythmicity during the ictal phase. Mice in which Nkx2.1 was deleted after E12.5 did not exhibit seizure behavior or abnormal EEG discharges.

Since Nkx2.1 was suspected to regulate cell fate in the MGE, the GABAergic interneuron populations were characterized. Dramatic deficits in Gad1 (Gad67)-expressing neurons were found (31). However, individual subpopulations were selectively affected: Nkx2.1 loss at E10.5 led to gross deficits in PV and SST neurons in all cortical layers, with increased VIP and CR populations. A different scenario was observed after E12.5 Nkx2.1 deletion, with PV cell deficits and VIP and CR cell excesses only in superficial cortical layers, interneurons in the deep cortical layers being similar to control mice, and SST neurons were not affected in any region. The distinct differences in cortical interneuron populations between the timed mutants indicated that Nkx2.1 controls a cell fate switch, and in the absence of Nkx2.1, the cells generated in the MGE follow fates normally specified by CGE and LGE regions. For example, the reduction of PV and SST cells was due to progenitors adopting the caudal fate and becoming VIP and CR neurons. Medium spiny projection neurons, normally produced by the LGE, were generated in Nkx2.1 null regions at the expense of striatal interneurons. The changes in interneuron cell fates correspond well with the clinical presentations of chorea, hypotonia, and dyskinesia in patients with NKK2.1 mutations (32). Considering the severe seizure phenotypes observed in mice with Nkx2.1 deletions before E12.5, the null mutations are likely incompatible with human survival. Additional, as yet unidentified, alleles may be present in patients with seizure disorders.

In the Nkx2.1 molecular pathway, the transcription factor Lhx6 is downstream of Nkx2.1, followed by Sox6 (33). Sox6−/−...
mice are born alive, but most die within an hour from unknown causes, and the surviving mice have stunted growth and reduced numbers of Gad67 interneurons (34). To overcome the perinatal lethality and retarded growth, Sox6 was specifically eliminated in MGE interneurons using Cre-loxP recombination and the Lhx6-cre driver mouse line. The loss of Sox6 impaired interneuron migration, leading to altered laminar distribution within the cerebral cortex and hippocampus. In addition, the Sox6 mutants exhibited nearly complete loss of the PV population but overrepresentation of NPY cells (34). In the adult, the few remaining PV cells do not exhibit normal fast-spiking characteristics, instead appearing to be immature PV interneurons. EEG recordings correspond with aberrant interneuron profiles and maturity, demonstrating seizures, abnormal theta oscillations, and increased power in the delta band. Sox6 has not yet been associated with human neurological disorders, but considering its role in establishing and maintaining inhibition in the hippocampus, allelic variations may be susceptibility factors for epileptogenesis in the medial temporal lobe.

By altering the fate of the cells in the MGE, loss of Dlx1/2, Nkx2.1, and Sox6 modified the interneuron profiles within the future striatum and in the cerebral cortical and hippocampal targets, leading to abnormal circuitry and seizures. While initially expressed throughout all domains of the GE, the transcription factor, COUP-TFI, becomes restricted to the more caudal regions by E13.5. Eliminating COUP-TFI early in development altered the interneuron subtype portfolio without affecting the overall number of Gad67 cells (35). The numbers of PV and NPY neurons were increased, whereas the CR and VIP populations—normally derived from the CGE—were decreased. EEG recordings in adult mice exhibited no differences in normalized power or individual frequency bands. However, the COUP-TFI mutant mice were more resistant to seizure induction, either by pilocarpine or PTZ, with increased latencies to the first generalized tonic-clonic seizure. The COUP-TFI mutation presents an example of altered interneuron specification that may reduce the likelihood of epileptogenesis.

Interneuron Migration and Maturation Defects

Newly born interneurons leave the proliferative zones and migrate to their final destinations—including the cerebral cortex, hippocampus, amygdala, and olfactory bulbs—or remain in the dorsal striatum. Impaired or delayed migration changes the overall distribution of forebrain GABAergic interneurons, with fewer in target areas such as the cerebral cortex and hippocampus and possibly excessive neurons remaining in the striatum or undergoing cell death. In absence of Dlx5 or Dlx5/6, dorsal migration is delayed, likely due to decreased expression of the migration cue Cxcr4 (36). The Dlx5/6+/− mouse is embryonic lethal, but the Dlx5/6−/− mouse lives to adulthood with reduced cortical PV neurons, electrographic seizures, and decreased gamma oscillations (30–80 Hz frequency band) (36). DLX5 mutations have been associated with autism and future variants may link to epilepsy (37).

In multiple mouse models, the loss of Arx greatly diminished interneuron migration into the cerebral cortex without altering interneuron fate (38, 39). In patients, ARX mutations have been associated with X-linked infantile spasms syndrome (ISSX) and X-linked lissencephaly and ambiguous genitalia (XLAG) disorder, and these phenotypes have been recapitulated to some extent in mouse models. While null mutations are perinatal lethal, conditional mutations or humanized variants of Arx demonstrated an array of seizure phenotypes during P7–P11 and in the adult, but not during infancy. The nature of the seizures changed with age, with transient spasms and myoclonic seizures in preweanling mice and tonic–clonic seizures or only electrographic seizures and behavioral arrest in adults (40). In the mouse models, ~50% of heterozygous females were observed to exhibit seizures. This finding prompted further study in humans, revealing new roles for ARX mutations in epilepsy and developmental disorders in the previously unrecognized female population. Downstream targets of ARX are currently being discovered; one candidate, MEFC2 was recently reported to be involved in multiple seizure forms and abnormal motor function, placing MEFC2 within the DLX1/2 and ARX regulatory cascade (41).

Molecular pathways originally identified with roles in axonal and dendritic outgrowth participate in regulation of interneuron migration. Growth factor and receptor pairs—such as brain-derived neurotrophic factor (BDNF) and TrkB, glial cell line-derived neurotrophic factor (GDNF) and GFRα1, hepatocyte growth factor (HGF) and Met, and neuroregulin-1 and ErbB4—have roles in interneuron migration (42–44). PV cells are missing in large patches of cortex in mice genetically engineered for loss of GFRα1 in GABAergic interneuron precursors, and the adult mice exhibit decreased inhibition in EEG traces and increased susceptibility and severity to PTZ-induced seizures (45). Similarly, reduced levels of HGF/Met signaling impaired GABAergic interneuron migration and differentiation into PV cells, with eventual loss of the PV population, spontaneous seizures, and increased sensitivity to PTZ induction (46). Axon guidance molecules of the Robo/Slit and Semaphorin/Neuropilin families have roles in embryonic interneuron migration (47, 48), but their involvement in epilepsy has only recently emerged, with the neuropilin-2 null mice being more sensitive to chemically induced seizures.

Correcting Interneuron Deficits to Cure Epilepsy

Identification of critical molecular pathways and candidates has opened the door to correct the abnormalities and alter the trajectory of epileptogenesis away from disorder and towards a cure. In the case of growth factor deficits, short-term supplementation may stabilize the neural network and prevent the subsequent interneuron death and seizure onset. Postnatal supplementation of HGF, by temporary gene overexpression, overcame the endogenous HGF deficits in juvenile mice, halted the interneuron death in adults, and greatly diminished spontaneous and induced seizures (49). Similar approaches, using short-term administration of growth factor receptor agonists, may be sufficient to redirect or halt epileptogenesis progression. Finally, the most severe interneuron dysfunction and seizures arise from mutations that control cell fate. Transplantation of embryonic interneuron progenitor cells into mouse models of human epilepsies holds incredible promise (50).
11. Nery S, Fishell G, Corbin JG. The caudal ganglionic eminence is a
10. Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA. Origins of
7. Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration
5. Erickson JC, Clegg KE, Palmier RD. Sensitivity to leptin and
4. Buckmaster PS, Otero-Corchon V, Rubinstein M, Low MJ. Heightened
2. Profiles of interneuron subtypes are determined in the embryo and altered by specific mutations.
1. Genes that determine interneuron lineage can be susceptibility factors for epilepsy.
5. Genes identified from developmental neurobiology are candidates for human disorders.

References

42. Powell EM, Mars WM, Levitt P. Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. *Neuron* 2001;30:79–89.

44. Pozas E, Ibanez CF. GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons. *Neuron* 2005;45:701–713.

Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. **Identifying information.**
Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. **The work under consideration for publication.**
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. **Relevant financial activities outside the submitted work.**
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (DGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. **Other relationships**
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
Section #1 Identifying Information

1. Today’s Date: April 9, 2013

2. First Name Elizabeth Last Name Powell Degree PhD

3. Are you the Main Assigned Author? ☒ Yes ☐ No

If no, enter your name as co-author:

4. Manuscript/Article Title: Interneurons and seizures: Early mistakes cause the most problems

5. Journal Issue you are submitting for:

Section #2 The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.
** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Payment for manuscript preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:

Thank you for your assistance.
Epilepsy Currents Editorial Board