Commentary

Kinases are ubiquitous enzymes that regulate cellular function by the simple act of transferring a phosphate group to a serine, threonine, or tyrosine residue on a protein substrate. Long a subject of interest at a basic science level, kinases have more recently become the focus of drug development for a number of diseases. Imatinib, an inhibitor of the tyrosine kinase abl, revolutionized the treatment of chronic myelogenous leukemia and became a blockbuster drug. Numerous other new drugs—mostly aimed at oncologic applications—have followed, and drug development against kinases now represents a major focus of pharmaceutical companies (1).

Interest in kinases and phosphorylation signaling is spreading to the epilepsy field as well. The recognition that the kinase mammalian target of rapamycin (mTOR) is hyperactivated in tuberous sclerosis (TS) has stimulated multiple investigations, demonstrating that pharmacologic mTOR inhibition is an effective antiepileptic treatment in humans with TS (2). Several investigators have taken this a step further, testing whether mTOR inhibition might be effective in animal models of acquired epilepsy. Numerous other new drugs—mostly aimed at oncologic applications—have followed, and drug development against kinases now represents a major focus of pharmaceutical companies (1).

While there is no clear evidence that mTOR inhibition may exert an antiepileptic action and possibly even an antiepileptogenic effect—that is, delaying or preventing the development of epilepsy after a neural insult (3, 4).

However, there is no priori reason that mTOR should be the only kinase involved in the development of acquired epilepsy; likely, multiple phosphorylation signaling pathways are activated following a neural insult. The tyrosine kinase TrkB is the latest candidate effector of epileptogenesis. As the current study by Liu et al. demonstrates, TrkB appears to be a critical mediator of epileptogenesis in at least one model of acquired epilepsy. TrkB is the receptor for brain-derived neurotrophic factor (BDNF), a molecule that had been widely hypothesized to mediate epileptogenesis. However, the investigators of the present study had previously demonstrated that genetic deletion of BDNF only modestly impaired development of kindling, while deletion of TrkB virtually abolished kindling (5). This focused attention away from BDNF and towards TrkB as a potential mediator of epileptogenesis in animal models.

It might be argued that kindling is not a sufficiently robust model from which to draw conclusions about epileptogenesis given (in most cases) a lack of spontaneous seizures in kindled animals. The current study takes this issue head-on by using kainic acid (KA) injected into the amygdala to produce chronically epileptic mice. The authors also employed a clever technique to circumvent the lack of selective TrkB pharmacologic inhibitors: a transgenic mouse engineered with a TrkB mutation that renders its TrkB receptors susceptible to inhibition by a novel small molecule (1NMPP1). This enabled the investigators to selectively block TrkB in the mutant mice, while wild-type mice were unaffected by the novel inhibitor.

With this tool in hand, the investigators used a straightforward and rigorous experimental design to test whether TrkB inhibition affected epileptogenesis following KA injection. They implanted a single depth EEG electrode in the hippocampus to monitor seizure occurrence and then injected KA in the contralateral amygdala. After 40 min of status epilepticus (SE), they administered benzodiazepines and started TrkB inhibitor treatment. The inhibitor was continued for two weeks, during which EEG was continuously monitored. Three weeks after the inhibitor was stopped, a repeat week of EEG monitoring was used to evaluate whether animals remained seizure-free.

Transient Inhibition of TrkB Kinase after Status Epilepticus Prevents Development of Temporal Lobe Epilepsy.

Temporal lobe epilepsy is the most common and often devastating form of human epilepsy. The molecular mechanism underlying the development of temporal lobe epilepsy remains largely unknown. Emerging evidence suggests that activation of the BDNF receptor TrkB promotes epileptogenesis caused by status epilepticus. We investigated a mouse model in which a brief episode of status epilepticus results in chronic recurrent seizures, anxiety-like behavior, and destruction of hippocampal neurons. We used a chemical-genetic approach to selectively inhibit activation of TrkB. We demonstrate that inhibition of TrkB commencing after status epilepticus and continued for 2 weeks prevents recurrent seizures, ameliorates anxiety-like behavior, and limits loss of hippocampal neurons when tested weeks to months later. That transient inhibition commencing after status epilepticus can prevent these long-lasting devastating consequences establishes TrkB signaling as an attractive target for developing preventive treatments of epilepsy in humans.
Biochemical analysis of TrkB activity showed that TrkB was hyperactivated within hours following SE, remained so for at least several days, and was effectively reduced to control levels by the novel inhibitor.

TrkB inhibition caused an impressive reduction in the development of epilepsy. Out of 10 treated mutant mice, only two showed seizures in the first two weeks post-SE (during inhibitor treatment), while only one remained epileptic in weeks 5–6 post-SE after the inhibitor had been stopped. In comparison, 100% of wild-type animals treated with inhibitor (which was ineffective in blocking TrkB activity since the mice lack the sensitizing mutation) became epileptic and showed a far higher rate of spontaneous seizures. The investigators went on to show that the treated, non-epileptic mice showed relative preservation of hippocampal pyramidal neuron counts and lacked anxiety-like behaviors that epileptic mice exhibited. Thus, TrkB inhibition robustly protected against the development of epilepsy and some of its behavioral sequelae.

The magnitude of the effect of TrkB inhibition in this study was substantial and the experiments were performed meticulously. Is the case closed that TrkB mediates epileptogenesis? A few issues remain to be explored. In this protocol, the inhibitor was delivered while SE was still ongoing, raising the possibility that its administration somehow attenuated the intensity of the SE insult. To their credit, the investigators quantified EEG power and behavioral seizure scores during SE to dispel concerns that treated animals were not subjected to a similarly intense insult as the controls. Nonetheless, it is hard to know whether some aspect of SE not captured by EEG was affected by treatment. Likewise, inhibitor treatment was continued for two weeks, a time period when untreated animals began to have spontaneous seizures; if the inhibitor has intrinsic antiepileptic properties, it is possible that suppression of early seizures may only delay the onset of epilepsy and not prevent it altogether, as has been shown in a genetic model of epilepsy (6). Ideally, these issues could be addressed by changing the treatment time window so not to overlap SE or the typical onset of spontaneous seizures. A trial of the inhibitor in animals with established epilepsy would also determine whether the drug has intrinsic antiepileptic properties; since post-SE animal models depend on seizures to generate a brain insult, an intervention with antiepileptic efficacy presents a potential confound in determining its antiepilptogenic influence.

Those caveats aside, this study represents a compelling validation of TrkB as a phosphorylation signaling pathway with an important role in epileptogenesis. The identification of downstream effectors of TrkB, as well as upstream activators, will be vital topics of future investigation. If pharmacological development against TrkB signaling proceeds as is occurring with other disease-implicated kinases, the therapeutic potential of TrkB inhibition after neural insult could be explored in a variety of animal models, and, after further validation, perhaps in humans as well.

by Nicholas P. Poolos, MD, PhD

References
Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. Identifying information.
 Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. The work under consideration for publication.
 This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. Relevant financial activities outside the submitted work.
 This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (DGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

 Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

 For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. Other relationships
 Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
American Epilepsy Society

Epilepsy Currents Journal

Disclosure of Potential Conflicts of Interest

Section #1 Identifying Information

1. Today’s Date: 04/28/14

2. First Name Nicholas Last Name Poolos Degree MD, PhD

3. Are you the Main Assigned Author? ☑ Yes ☐ No

 If no, enter your name as co-author:

4. Manuscript/Article Title: Stopping epileptogenesis dead in its Trks

5. Journal Issue you are submitting for:

Section #2 The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.

** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td></td>
<td></td>
<td>$370,000</td>
<td>NIH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$65,000</td>
<td>UCB Pharma</td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Payment for manuscript preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:

Thank you for your assistance.
Epilepsy Currents Editorial Board