The most fundamental basis of the study of epilepsy relies on a solid and accurate understanding of two concepts: the central neuronal networks that govern human behavior and the brain's anatomy that provides the structural framework for various patterns of connectivity. A thorough analysis of a seizure's semiology is therefore an essential foundation in the attempt to localize and define a patient's epilepsy because it provides a unique and precious opportunity to appreciate this critical and dynamic duo of function and anatomy as it pertains to an individual clinical scenario. While this is a self-evident fact, it is often overlooked in the current era of "high-tech"—expensive neuroimaging and diagnostic tests that overshadow the current conduct of presurgical work-ups for intractable epilepsy. This commentary will use a growing body of literature—including the work by Bonini et al. highlighted here—to achieve two goals: 1) to address the diagnostic and localizing role of semiology in epilepsy surgery evaluations, and 2) to highlight the mechanistic and clinical benefits of a more comprehensive view of the systems underpinning ictal manifestations.

Let's define first the question at hand. Although the lateralizing value of several semiological signs—such as clonic head version, hand dystonia, postictal aphasia, and Todd's palsy—are well-established (1), the value of semiological signs to localize epilepsy has been more controversial, particularly in the context of the frontal lobe epilepsies. The study at hand by Bonini et al. and several others with similarly stated goals (2–5) share many similarities in their methodology: all analyze semiological signs using some variation of the statistical methods of cluster analysis, and semiological features correlated with anatomic localization. Results: Four main groups of patients were identified according to semiological features, and correlated with specific patterns of anatomic seizure localization. Group 1 was characterized clinically by elementary motor signs and involved precentral and premotor regions. Group 2 was characterized by a combination of elementary motor signs and nonintegrated gestural motor behavior, and involved both premotor and prefrontal regions. Group 3 was characterized by integrated gestural motor behavior with distal stereotypies and involved anterior lateral and medial prefrontal regions. Group 4 was characterized by seizures with fearful behavior and involved the paralimbic system (ventromedial prefrontal cortex ± anterior temporal structures). The groups were organized along a rostrocaudal axis, representing bands within a spectrum rather than rigid categories. The more anterior the seizure organization, the more likely was the occurrence of integrated behavior during seizures. Distal stereotypies were associated with the most anterior prefrontal localizations, whereas proximal stereotypies occurred in more posterior prefrontal regions. SIGNIFICANCE: Meaningful categorization of frontal seizures in terms of semiology is possible and correlates with anatomic organization along a rostrocaudal axis, in keeping with current hypotheses of frontal lobe hierarchical organization. The proposed electroclinical categorization offers pointers as to the likely zone of organization of networks underlying semiological production, thus aiding presurgical localization. Furthermore, analysis of ictal motor behavior in prefrontal seizures, including stereotypies, leads to deciphering the cortico-subcortical networks that produce such behaviors.
and 16 patients “clustering” in Group 1 with elementary motor signs involving the precentral and premotor regions in Bonini et al. Second, seizures characterized by general motor agitation suggested an orbitofrontal and frontopolar epilepsy, consistent with lesions (2) or with stereo-EEG patterns involving these regions, as in Type 1 hypermotor seizures (HMS1)—as described in Rheims et al. (3), and Group 4 seizures described by Bonini et al. Yet, the conclusions drawn by the authors on the significance of their findings and the value of semiology are markedly different. On one hand, some concluded that “relatively few seizures can be localized reliably on clinical grounds” (2); on the other hand, the current work by Bonini et al. concludes that “meaningful categorization of frontal seizures in terms of semiology is possible . . . thus aiding presurgical localization.” Understanding the apparent discrepancy between these two extremes seems to be critical in building consensus and helping us—and the population of “epileptologists at large”—in advancing the conduct of presurgical evaluation. The first hint helping us to tackle these differences lies in the methodology: particularly, in the definition of the “frontal lobe localization” itself.

Studies eventually doubting the localizing value of semiology usually attempted to validate semiological signs by evaluating their relationship to the localization of a frontal lobe lesion or to the ictal onset region (2, 4, 5), often defining a reliable localizing semiological sign as one that can be dependably reproduced by direct cortical stimulation (6). In this context, the underlying hypothesis assumes that the clinical manifestations during a seizure are mainly the direct result of electrically activating the underlying cortex of interest (the lesion at hand or the ictal onset zone). This would easily account for the strong localizing value and reliable reproducibility with cortical stimulation of “simple” sensory ictal manifestations such as visual, auditory, or somatosensory auras, but inevitably falls short in explaining more complex behaviors such as automatisms or psychomotor ictal changes. In fact, recent neurobehavioral work interestingly brings in additional layers defining human action beyond the anatomical localization of the cortex activated. One example includes the concept of “frequency gating”: in a recent study of the primary sensorimotor network, isometric contraction of the forearm showed dominant coupling within the β-band (13–30 Hz) between the primary motor cortex (M1) and the supplementary motor area (SMA), whereas fast repetitive finger movements were characterized by strong coupling within the γ-band (31–48 Hz), mainly seen in connections from lateral premotor cortex to SMA and to M1. All three structures (M1, SMA, and lateral premotor cortex) are components of the “same” sensorimotor network, yet they were activated to a different degree and “connected” differently in different motor tasks with these variations in connectivity potentially gated by varying their underlying firing frequency (7). Another example includes a tremendous body of work illustrating how complex behavior is truly the result of the interactions among various brain regions, rather than the activation of any single area (8). An ictal recording—whether with scalp or with invasive EEG—actually requires, by definition, an evolution in the frequency and distribution of the electrical activity, starting from a restricted area of ictal onset. Therefore, patients practically demonstrate semiological signs in various combinations and sequences, and not usually in isolation. Furthermore, at the point in time when any semiological sign emerges, there is a lot more in the cortex that is being activated besides the ictal onset zone. The brain’s symptomatic “state” rather than the localization of a single symptomatogenic “zone” is logically then more relevant to a patient’s clinical behavior at any point during a seizure’s evolution. This line of thought likely explains why studies eventually touting the localizing value of semiological manifestations evaluated them in relation to the activated ictal networks rather than the ictal focus.

Given the richness of the epileptic and functional networks alluded to earlier, one would then naturally understand and even expect that a given isolated semiological sign occurs with epilepsies that may arise from different areas of the brain. In that sense, there is no semiological sign with a perfect correlation to a given epilepsy localization. This observation should not, however, “limit” the value of semiology any more than the 50% seizure recurrence rate following temporal lobectomy for hippocampal sclerosis should limit the value of neuro-imaging to identify mesial temporal pathology. A surgical work-up is akin to solving a puzzle, with each piece serving its purpose—no more but also no less.

For frontal lobe epilepsy where a growing proportion of patients with intractable epilepsy are presenting for a presurgical evaluation without a clear lesion and where delay in resection worsens the chances of surgical success (9, 10), time is indeed of the essence, and the use of every piece of noninvasively acquired information—including semiology—should be optimized.

by Lara E. Jehi, MD

References

American Epilepsy Society

Epilepsy Currents Journal

Disclosure of Potential Conflicts of Interest

Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. Identifying information.
Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (DGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. Other relationships
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
American Epilepsy Society
Epilepsy Currents Journal
Disclosure of Potential Conflicts of Interest

Section #1 Identifying Information
1. Today’s Date: 1/2/14
2. First Name Lara Last Name Jehi Degree MD
3. Are you the Main Assigned Author? ☑ Yes ☐ No
 If no, enter your name as co-author:
4. Manuscript/Article Title: The role of semiology in the work-up of frontal lobe epilepsy: in the eye of the beholder.
5. Journal Issue you are submitting for: 14.4

Section #2 The Work Under Consideration for Publication
Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.
** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Payment for manuscript preparation.</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:

Thank you for your assistance.

Epilepsy Currents Editorial Board