Deep Brain Stimulation in the Dish: Focus on Mechanisms

Long-lasting Hyperpolarization Underlies Seizure Reduction by Low Frequency Deep Brain Electrical Stimulation.

Mesial temporal lobe epilepsy (MTLE) is a common medically refractory neurological disease. Deep brain electrical stimulation (DBS) of grey matter has been used for MTLE with limited success. However, stimulation of a white matter tract connecting the hippocampi, the ventral hippocampal commissure (VHC), with low frequencies that simulate interictal discharges has shown promising results, with seizure reduction greater than 98% in bilateral hippocampi during stimulation and greater than 50% seizure reduction in bilateral hippocampi after treatment. A major hurdle to the implementation and optimization of this treatment is that the mechanisms of seizure reduction by low frequency electrical stimulation (LFS) are not known. The goal of this study is to understand how commissural fibre tract stimulation reduces bilateral hippocampal epileptic activity in an in vitro slice preparation containing bilateral hippocampi connected by the VHC. It is our hypothesis that electrical stimuli induce hyperpolarization lasting hundreds of milliseconds following each pulse which reduces spontaneous epileptic activity during each inter-stimulus interval (ISI). Stimulus-induced long-lasting hyperpolarization (LLH) can be mediated by GABA_B inhibitory post-synaptic potentials (IPSPs) or slow after-hyperpolarization (sAHP). To test the role of LLH in effective bilateral seizure reduction by fibre tract stimulation, we measured stimulus-induced hyperpolarization during LFS of the VHC using electrophysiology techniques. Antagonism of the GABA_B IPSP and/or sAHP diminished stimulus-induced hyperpolarization concurrently with LFS efficacy (greater than 50% reduction). Blocking both the GABA_B IPSP and sAHP simultaneously eliminated the effect of electrical stimulation on seizure reduction entirely. These data show that LFS of the VHC is an effective protocol for bilateral hippocampal seizure reduction and that its efficacy relies on the induction of long-lasting hyperpolarization mediated through GABAB IPSPs and sAHP. Based on this study, optimization of the timing of LFS and LFS-induced-LLH may lead to improved outcomes from DBS treatments for human epilepsy.

Commentary

Deep brain stimulation (DBS) has emerged as an alternative therapeutic approach for the treatment of refractory epilepsies, in particular of mesial temporal lobe epilepsy, with >800 patients reported on in >50 published clinical studies to date (1). Despite its frequent and emerging clinical use and its demonstration of tolerability and efficacy in seizure prevention, the underlying mechanisms are still poorly defined. Interpretation of clinical and laboratory research data is challenging due to a multitude of stimulation protocols used, differing in stimulation frequencies and target locations.

Stimulations have been used in a wide frequency range between 0.1 and 400 Hz, and studies have shown that efficacy depends on frequency, duration, and mode of delivery (pulses vs continuous stimulation). Both low frequency stimulation (LFS; usually <12 Hz) and high frequency stimulation (HFS; usually >25 Hz) have been used clinically with opposing outcomes in different settings (2, 3). The sites of stimulation reflect different strategies to intervene with seizure generation. Modulation of the seizure network can be achieved by stimulating the cerebellum, basal ganglia, brainstem, hypothalamus, or thalamus, whereas the seizure focus may directly be targeted by stimulation of the hippocampus, amygdala or piriform cortex, entorhinal cortex, or neocortex (4). This enormous variability of approaches necessitates the need for more mechanistic studies, of which there have been surprisingly few. Key hypotheses include depression of the synaptic neuronal response and increased inhibitory neurotransmission, the generation of potassium-mediated depolarization block, and glial mechanisms (5, 6). Recent research using deep brain stimulation to treat essential tremor in an animal model of Parkinson’s disease has demonstrated that nonsynaptic mechanisms involving the increased generation of adenosine, an endogenous anticonvulsant of the brain (7), suppressed tremor activity and caused limited side effects (8).

The study by Toprani and Durand was designed to test the effects of low frequency electrical stimulation on the induction of long-lasting hyperpolarization in hippocampal pyramidal cells as a candidate mechanism for seizure reduction by LFS. The authors used a functionally connected bilateral hippocampal slice preparation and LFS stimulation of the ventral
hippocampal commissure (using a frequency range of 1 to 10 Hz) in combination with intra-extracellular recordings from both hippocampi (from CA1 and CA3). Seizures were induced by 4-aminopyridine, a blocker of voltage-activated K+ channels, by magnesium-withdrawal, or by bicuculline methiodide, an antagonist of GABA_A receptors.

Toprani and Durand first demonstrated that LFS reduced 4-AP-induced epileptiform activity in their bilateral hippocampal slice preparation. Several putative mechanisms for the antiepileptic effect of LFS were subsequently addressed. First, long-term depression (LTD) was discarded as a putative mechanism because (a) seizure reduction by LFS was observed within 30 seconds after onset of stimulation, a time course not compatible with LTD and (b) the evoked potentials did not significantly change in amplitude during LFS nor did the number of action potentials recruited per stimulus. Second, a contribution of glial cells was excluded based on the lack of voltage shifts in response to LFS. Third, a contribution of GABA_B receptors and the sAHP in epileptic and nonepileptic hyperpolarization was diminished by antagonists of both the potassium channel, because the LFS-induced long-lasting hyperpolarization (sAHP) thought to be mediated by a small conductance potassium channel, which protected cells from seizure activity. This long-lasting hyperpolarization depended on (a) GABA_B inhibitory post-synaptic potentials (IPSPs) and (b) the slow after-hyperpolarization (sAHP) thought to be mediated by a small conductance potassium channel, because the LFS-induced long-lasting hyperpolarization was diminished by antagonists of both the GABA_B receptors and the sAHP in epileptic and nonepileptic slices. GABA_B or sAHP antagonists reduced the therapeutic efficacy of LFS in the slice model. When both mechanisms were blocked, the seizure reduction by LFS was abolished.

In conclusion, the study of Toprani and Durand shows that LFS of a white matter tract that connects both hippocampi reduced chemically induced epileptiform activity in a bilateral hippocampus preparation. Seizure activity was suppressed by LFS-induced long-lasting hyperpolarization in the inter-stimulus intervals, which in turn was mediated by GABA_B IPSPs and the sAHP. A strength of the current study is that major competing putative mechanisms were nicely excluded by specific experiments.

Several aspects of this study warrant further discussion. Whereas GABA_B-mediated mechanisms are well-studied and plausible, the contribution of sAHP to LFS-induced seizure reduction are of interest, because the molecular identity of the channel underlying the sAHP (likely a small conductance potassium channel) is currently unknown and a specific blocker for this channel has been developed just recently. Of note, sAHP plays a major role in the regulation of memory retrieval (9); therefore, enhancing sAHP by LFS may lead to defects in memory retrieval, an adverse effect that might be problematic for patients with mTLE who suffer from cognitive impairment. Further limitations of the study include the use of an in vitro model of chemically induced seizures, which do not reflect pathogenic processes underlying temporal lobe epilepsy, the major target population for DBS. It remains to be determined whether the mechanisms identified here are likewise applicable to a more realistic model of spontaneous recurrent seizure activity. A recent study from the same group (10) demonstrated efficacy of LFS in a rat model of temporal lobe epilepsy triggered by status epilepticus. In that study, LFS of 1 Hz significantly reduced both the excitability of the neural tissue and the seizure frequency. These results further support the hypothesis that LFS of fiber tracts can be an effective method to suppress spontaneous seizures. The mechanistic findings provided here could lead to the development of new therapies for patients with temporal lobe epilepsy.

by Detlev Boison, PhD

References

Disclosure of Potential Conflicts of Interest

Instructions

The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. **Identifying information.**
 Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. **The work under consideration for publication.**
 This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. **Relevant financial activities outside the submitted work.**
 This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

 Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

 For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. **Other relationships**
 Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
American Epilepsy Society
Epilepsy Currents Journal
Disclosure of Potential Conflicts of Interest

Section #1 Identifying Information

1. Today’s Date: 5/21/13

2. First Name Detlev Last Name Boison Degree PhD

3. Are you the Main Assigned Author? ☑ Yes ☐ No

 If no, enter your name as co-author:

4. Manuscript/Article Title: Deep Brain Stimulation In The Dish: Focus on Mechanisms

5. Journal Issue you are submitting for: 14.4

Section #2 The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.
** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the "Add" box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Payment for manuscript preparation.</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:

Thank you for your assistance.
Epilepsy Currents Editorial Board