Female Hormones Prevent a Catastrophic Epilepsy in Male Mice

Neonatal Estradiol Stimulation Prevents Epilepsy in Arx Model of X-linked Infantile Spasms Syndrome.

Infantile spasms are a catastrophic form of pediatric epilepsy with inadequate treatment. In patients, mutation of ARX, a transcription factor selectively expressed in neuronal precursors and adult inhibitory interneurons, impairs cell migration and causes a major inherited subtype of the disease X-linked infantile spasms syndrome. Using an animal model, the Arx(GCG)10+7 mouse, we determined that brief estradiol (E2) administration during early postnatal development prevented spasms in infancy and seizures in adult mutants. E2 was ineffective when delivered after puberty or 30 days after birth. Early E2 treatment altered mRNA levels of three downstream targets of Arx (Shox2, Ebf3, and Lgi1) and restored depleted interneuron populations without increasing GABAergic synaptic density. Postnatal E2 treatment may induce lasting transcriptional changes that lead to enduring disease modification and could potentially serve as a therapy for inherited interneuronopathies.

Commentary

Infantile spasms (IS) is a catastrophic epilepsy syndrome occurring during the specific developmental period of infancy and early childhood. In addition to the stereotypic motor spasms, patients with IS typically develop long-term intellectual disability and other seizure types that are often resistant to treatment. A variety of acquired brain injuries at this critical age can result in IS, such as hypoxia–ischemia, meningitis, and traumatic brain injury. However, with advances in genetic testing, an increasing number of genetic mutations have been identified as etiologies of IS (1).

An X-linked recessive IS syndrome has recently been described in association with mutations in the Aristaless-related homeobox (ARX) gene (2). ARX mutations have also been implicated in causing a spectrum of related neurological disorders primarily affecting males, including X-linked lissencephaly with abnormal genitalia, Partington syndrome (intellectual disability with focal dystonia), and nonsyndromic mental retardation (3). The ARX protein is a transcriptional factor that modulates the expression of a number of other genes involved in migration and differentiation of interneurons. Thus, ARX mutations most likely cause IS due to migration defects of cortical and subcortical interneurons.

To investigate the pathophysiological mechanisms of ARX mutations in more detail, a number of mouse models have been created. A conventional knock-out mouse involving constitutive inactivation of the Arx gene in all cells dies shortly after birth but exhibits a small, malformed brain with a severe interneuron migration defect, confirming the critical involvement of ARX in cortical interneuron development (4). Another model, Arx(GCG)10+7 mice, incorporates the most common human ARX mutation causing X-linked IS syndrome, a triplet repeat polyalanine expansion in the ARX gene (5). This mouse model survives into adulthood and recapitulates a number of the phenotypic features of X-linked IS syndrome, including spasm-like seizures as pups and other severe seizures and cognitive impairment as adults. In addition, Arx(GCG)10+7 mice exhibit selective reduction of specific interneuron subtypes in cortex, hippocampus, and striatum.

This realistic ARX mouse model of X-linked IS syndrome provides the opportunity to identify downstream mechanisms involved in generating the phenotype and to assess rational, mechanistically targeted treatments for this disorder. Given the evidence of neuronal migration defects related to ARX mutations, one testable hypothesis involves hormonal regulation of cortical development. In particular, surges in estrogen—mediated by local conversion of testosterone in the male brain—and associated estrogen receptor expression during critical developmental stages have been implicated in promoting cortical development, including migration of interneurons (6, 7).

The recent study by Olivetti and colleagues tests whether estrogen administered during specific developmental periods modulates the phenotype of Arx(GCG)10+7 mice. Remarkably, they found that early estrogen treatment between the third and 10th postnatal days significantly reduces the motor spasms of male Arx(GCG)10+7 pups, and also decreases subsequent seizures in adult male mice. These behavioral effects of estrogen correlated with an increase in specific subtypes of
cortical interneurons, suggesting that estrogen may improve the epilepsy phenotype by correcting deficits in interneuron migration in Arx(GCG)10+7 mice. Furthermore, estrogen altered the expression of downstream genes normally targeted by ARX and implicated in cortical development. However, somewhat surprisingly, no detectable difference was found in GABAergic synaptic terminals, either in the mutant mice compared with controls or in the estrogen-treated mice. Thus, the specific downstream mechanisms directly causing and mediating the changes in the epilepsy phenotype are unknown. Importantly, late treatment with estrogen after 4 weeks of age had no effect on epilepsy in adult Arx(GCG)10+7 mice, indicating the developmental sensitivity of the early estrogen effect, possibly related to interneuron migration.

Regardless of the downstream mechanisms involved, the dramatic effects of early estrogen treatment in preventing later life epilepsy in Arx(GCG)10+7 mice appear consistent with a disease-modifying or antiepileptogenic effect—not simply seizure-suppression—and have important translational implications in considering novel clinical trials for patients with X-linked IS. However, the specificity and mechanistic relationship of estrogen’s action and X-linked IS are still ill-defined and, as a result, may actually have broader clinical implications. In particular, an underlying defect in estrogen metabolism or signaling in Arx(GCG)10+7 mice might account for estrogen’s beneficial effects from a mechanistic standpoint. However, no such abnormality in estrogen was identified in Arx(GCG)10+7 mice in this study. For example, a defect in conversion of testosterone to estrogen by the enzyme aromatase in the male brain might represent a rational explanation for impaired estrogenic regulation of cortical development and the corresponding corrective effects of estrogen, but brain expression of aromatase was normal in Arx(GCG)10+7 mice. Thus, it is not presently clear whether estrogen is correcting a specific mechanistic defect in Arx(GCG)10+7 mice or is simply compensating for another deficit.

Assuming there is no estrogen-specific defect in Arx(GCG)10+7 mice, the findings from this study suggest the possibility that estrogen could have broader applications for other neurological disorders involving impaired interneuron migration. From a therapeutic and translational standpoint, however, a critical issue is the timing of estrogen administration during development. In this study, the early estrogen treatment was started before the typical onset of spasms in Arx(GCG)10+7 mice. As later treatment starting in young adult mice was ineffective, the earliest feasible time to initiate treatment in patients would typically be at the first clinical presentation of spasms, but this was not tested in the mice. As much of early cortical development may be completed by this time, it remains to be seen whether estrogen treatment at the onset of spasms will maintain long-term disease-modifying effects.

Another clinically significant issue that was not addressed in this study is whether early estrogen treatment might also prevent the associated cognitive deficits that develop in IS, which are often more disabling than the seizures themselves. Arx(GCG)10+7 mice were previously documented to have associative learning deficits and autism-like abnormalities in social behavior (5), but the effects of estrogen on these neurobehavioral phenotypes were not reported in the current study. If estrogen is indeed found to improve cognitive and social outcomes, as well as having antiepileptogenic effects in Arx(GCG)10+7 mice, the clinical significance would be even more impressive. Nevertheless, while there are still a number of unanswered questions on the mechanistic and translational levels, this work provides reason for optimism for developing more effective treatments for catastrophic epilepsies of infancy.

by Michael Wong, MD, PhD

References

Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. Identifying information.
 Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. The work under consideration for publication.
 This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. Relevant financial activities outside the submitted work.
 This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

 Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

 For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. Other relationships
 Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
American Epilepsy Society

Epilepsy Currents Journal
Disclosure of Potential Conflicts of Interest

Section #1 Identifying Information

1. Today’s Date: 1/2/2013

2. First Name Michael Last Name Wong Degree MD, PhD

3. Are you the Main Assigned Author? ☑ Yes ☐ No

If no, enter your name as co-author:

4. Manuscript/Article Title: Female Hormones Prevent a Catastrophic Epilepsy in Male Mice

5. Journal Issue you are submitting for: 14.5

Section #2 The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.
** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td></td>
<td>national institutes of health</td>
<td>department of defense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Payment for manuscript preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:
Thank you for your assistance.

Epilepsy Currents Editorial Board