Dravet syndrome (DS, also known as Severe Myoclonic Epilepsy of Infancy) is a rare genetic epilepsy syndrome commonly associated with loss-of-function mutations in SCN1A, the gene encoding the α subunit of the voltage-gated sodium channel NaV1.1, resulting in haploinsufficiency. Like other voltage-gated sodium channels, NaV1.1 function contributes to the rising phase of the neuronal action potential; thus, the observation that loss-of-function mutations in this channel gene are associated with seizures has created a paradox for the field. Major work has been done to untangle this paradox during the past decade, resulting in the development of two distinct hypotheses to explain seizures in Dravet syndrome. Here, we review the history of these two hypotheses and speculate as to what the history of Dravet syndrome research might tell us about its future.

The first mutations linked to DS were identified in 2001 in SCN1A, the gene encoding the α subunit of the voltage-gated sodium channel NaV1.1 (3). To date, 70 to 80 percent of patients with DS have identified SCN1A mutations (4). Other genes have been implicated in DS by testing patients who do not have identifiable SCN1A mutations. These include GABARG2 (5), SCN1B (6), and SCN2A (7). Several genes have been linked to seizure syndromes that are phenotypically very similar to DS, notably PCDH19 (8) (a gene associated with Epilepsy in Females with Mental Retardation [EFMR]), and SCN8A (9). To further complicate the situation, it is becoming clear that single gene mutations do not tell the whole story and that modifier genes play important roles in disease severity (10). Studies of mutant SCN1A cDNAs from DS patients have shown that these mutations typically produce nonfunctional NaV1.1 channels (11, 12). Approximately half of SCN1A patient mutations are truncations that are predicted to result in no protein from one allele. These studies, in addition to work suggesting that most DS SCN1A mutations arise de novo (3, 13–15) have led to a generally accepted idea that DS mainly arises from de novo SCN1A haploinsufficiency. However, there is a paradox that confronts this idea: How is it that reduced expression of a gene encoding an essential depolarizing current predisposes cortical networks to excitability and synchrony? This review aims to summarize the research community’s attempts to untangle this paradox, and ultimately raises questions regarding what might be the most informative tools and questions to move the field forward.

The Interneuron Hypothesis

A major breakthrough in developing a theory for the pathophysiology of DS occurred with the development of the first mouse model of the disease by the Catterall group (16). This model, created through targeted, global deletion of the last coding exon from Scn1a, exhibited a strong seizure phenotype in both homozygous and heterozygous animals. These data were the first in vivo confirmation of Scn1a haploinsufficiency resulting in seizures. Patch clamp recordings in acutely dissociated hippocampal cells taken from postnatal day 14-16 (P14-16) Scn1a−/− animals demonstrated that bipolar GABAergic neurons (but not glutamatergic pyramidal neurons) had a dramatic reduction in sodium current density. This loss in sodium current for GABAergic neurons limited their ability to increase firing frequency in response to injected current. Based
on these results, it was postulated that seizures in DS arise because selective defects in GABAergic interneurons produce a network that lacks sufficient inhibitory tone. This theory was named the “interneuron hypothesis.”

Not long after the development of the Scn1a last coding exon deletion mouse model, the Yamakawa group developed a human DS SCN1A mutation model with mice engineered with the mutation (SCN1A^{11407E}) which implicated parvalbu-

nin-positive interneurons in seizure pathogenesis (17). This group reported that Na_{1.1} was preferentially expressed in the axon initial segments of parvalbumin-positive interneurons, suggesting that this cell type might be preferentially affected by SCN1A haploinsufficiency. Indeed, trains of action potentials from parvalbumin-positive interneurons of the mice engineered with the mutation showed profound spike amplitude decrement as the spike train progressed. The results from this model suggested that hyperexcitability in DS might not result from dysfunction of GABAergic interneurons in general but rather dysfunction of the parvalbumin-positive population. These results were further supported when a parvalbumin-

positive interneuron-specific Scn1a^{+/-} mouse was generated and found to have seizures (18).

Further evidence in favor of the interneuron hypothesis can be drawn from recent studies demonstrating that altering the balance of Scn1a expression in inhibitory versus excitatory neurons is sufficient to produce seizures. Forebrain GABAergic neuron-specific Scn1a^{+/-} mice (using the Dlk1/2 promoter to drive Cre expression) have a robust seizure phenotype, suggesting that reduction of Na_{1.1} expression in this population of inhibitory neurons is sufficient to induce hyperexcitability (19). It was also shown that heterozygous Scn1a deletion in all inhibitory neurons (using a VGAT-Cre mouse line) produced a seizure phenotype that was more severe than that which was observed in the global Scn1a heterozygotes or in the excitatory neuron Scn1a heterozygotes (generated using the EMX-Cre mouse line) (20). Importantly, when these authors directly compared Scn1a heterozygous deletion in parvalbu-

min-positive interneurons with Scn1a heterozygous deletion in all inhibitory interneurons, they observed substantially higher mortality in the latter group, raising the possibility that parvalbumin-negative interneurons may play an as yet unchar-

acterized role in seizure pathogenesis for mouse models of DS.

Challenging the Interneuron Hypothesis: New Models, New Ideas

While the transgenic mouse has been the workhorse of all studies that support the interneuron hypothesis, work using other models has generated an alternative theory to explain seizures in DS. Recent data using human patient-derived induced pluripotent stem cell (iPSC) neurons argues that intrinsic hyperexcitability of both GABAergic and glutamatergic neurons might underlie seizure activity in DS. The first group to report this observation used a neuronal differentiation protocol that produced predominantly GABAergic (but also some glutamatergic) neurons that expressed forebrain markers. They found that both GABAergic and glutamatergic forebrain neurons from DS patients were hyperexcitable compared to nonepileptic controls, with increased sodium current density, increased rates of action potential firing in response to depo-

larizing current injection, and epileptic-like spontaneous activity (21). Another group used a differentiation protocol that produced predominantly cortical glutamatergic, but also some GABAergic, neurons. They too observed that DS patient-de-

rived neurons were hyperexcitatory (22). How might increased sodium current density in both excitatory and inhibitory neurons result in epilepsy? An analogy that may be helpful to consider here is the administration of a chemoconvulsant, such as kainic acid, that would increase the activity of both inhibitory and excitatory neurons with the net outcome of sei-

zure generation. In the DS brain, it is proposed that increased excitability of both excitatory and inhibitory neurons would lead to network hyperexcitability or synchronization sufficient to produce seizures and cognitive dysfunction. Alternatively, neuronal hyperexcitability during embryonic brain development might lead to abnormal neuronal integration and result in network hyperexcitability and seizures.

The Liu et al. study using iPSC neurons hints at a novel theory of DS pathogenesis in which SCN1A haploinsufficiency results in a compensatory increase in sodium current, presumably through the expression of other voltage-gated sodium channels (21). The idea that SCN1A mutations in DS can produce changes in the expression of other sodium channel genes has been supported by several other studies. Acutely isolated cardiac myocytes from a DS mouse model engineered with the mutation showed increased TTX-resistant sodium current density that is attributed to increased Na_{1.5} function. Although this change was observed in cardiac myocytes rather than neurons, it demonstrates that excitable cells have the capacity to increase the expression of other sodium currents in the face of SCN1A haploinsufficiency (23). Similarly, in the Scn1b null mouse model of DS, Scn5a/Nav1.5 expression is increased in the heart. Furthermore, Scn1b deletion dramatically decreased Na_{1.1} immunostaining in dentate granule cells from the outer leaflet but increased Na_{1.3} immunostaining in this brain area (24).

Interestingly, there is some indirect evidence to suggest that Na_{1.6} in particular may be a key player in DS pathogenesis. In the last coding exon Scn1a^{+/-} deletion mouse model of DS, Scn8a (encoding Na_{1.6}) is a modifier of seizure pathogenesis. Here, Scn1a^{+/-} mice are more sensitive than WT mice to fluorothyl-induced seizures, while Scn1a^{+/-}/Scn8^{a^{-/-}} mice have wild-type levels of sensitivity (26). Recently, a 15-year-

old human patient was reported to have a seizure syndrome linked to a gain-of-function SCN8A mutation that shared many features with DS, including early-onset seizures, features of autism, intellectual disability, ataxia, and sudden unexplained death in epilepsy (SUDEP) (9).

What Makes a Good Model of DS: Insights from the Clinic

The two competing theories that have emerged to explain seizures in DS have been developed using different model systems. The interneuron hypothesis has relied entirely on work done in mouse models, while the more recent data that chal-

lenge the interneuron hypothesis have been generated using human patient-derived iPSC neurons. This discrepancy raises the possibility that disagreement between these two theories results from differences in the model systems themselves. Assessing the validity of these theories requires us to take what is
known about the human disease and to determine the extent to which the models that have been put forward reflect it in a functionally relevant manner.

Careful consideration of the interneuron hypothesis reveals a number of shortcomings when one tries to superimpose experimental findings from the mouse models with what is known clinically about DS. Much of the data supporting the interneuron hypothesis have been generated with a focus on the hippocampus. Although the hippocampus may be involved in some seizures that are seen in DS patients, it has limited relevance for the myoclonic seizures of DS, which are likely to be of cortical or thalamocortical origin (27). Because patients present with an array of different seizure types, it may be necessary to be more precise with our definitions of seizure pathophysiology in DS and acknowledge the possibility that different processes across different circuits may individually account for the genesis of different seizure types in this disease. Beyond this issue, it is worth noting that a great deal of the data in mouse models implicating GABAergic interneuron dysfunction in DS demonstrate only that Scn1a disruption in GABAergic interneurons is sufficient to produce seizures. This is not surprising, since one would expect targeted sodium channel deletion in inhibitory neurons to result in hyperexcitability. With these issues not yet addressed, it remains unclear to what extent insights from these models are functionally relevant in the seizures that human DS patients experience.

An important consideration is that the phenotypic severity of DS mouse models is highly dependent on genetic background and age of the animals at analysis. For example, Kearney and colleagues (29) demonstrated recently that Scn1a−/− mice exhibit strain-dependent seizure severity and survival. Mice on strain 129S6/SvEvTac (129. Scn1a−/−) showed no overt phenotype and normal survival compared with mice bred to C57BL/6J (F1. Scn1a−/−) that had severe epilepsy and premature lethality. Patch clamp recording of hippocampal neurons from P14-16 Scn1a+/− mice or F1. Scn1a+/− mice showed that sodium current density was lower in GABAergic interneurons from F1. Scn1a+/− mice compared to wild-type, while on the 129 strain there was no difference in GABAergic interneuron sodium current density between 129. Scn1a+/+ mice and wild-type. In contrast, and similar to the iPSC neuron model of DS, sodium current density was elevated in pyramidal neurons from both 129. Scn1a+/− and F1. Scn1a+/− mice. These authors also observed age-dependent differences in pyramidal neuron sodium current density between wild-type and Scn1a−/− animals. Interestingly, the observed elevated sodium current density in excitatory pyramidal neurons at P21-24 correlated with age-dependent onset of lethality in F1. Scn1a−/− mice. This is in contrast to the study by the Catterall group (16), described above, which analyzed neurons from P14-16 mice.

The hypothesis that intrinsic hyperexcitability is a primary driver of seizures in DS also has its shortcomings, in large part because the data supporting this hypothesis were generated using iPSC neurons. Importantly, while these data have demonstrated a cell autonomous phenotype, there is not yet a connection between intrinsic cellular hyperexcitability in iPSC neurons and clinically relevant seizure behavior that we know is dependent on neuronal circuits. Beyond that, the relatively novel and untested nature of iPSC neuron models is itself an issue: The iPSC technology has existed only since 2006, and functional studies in neurons derived from iPSCs are even newer. It is worth noting that iPSCs have been used to successfully investigate Timothy syndrome, another developmental epilepsy. Studies of iPSCs from Timothy syndrome patients that were differentiated to follow a cortical specification showed activity-dependent changes in dendrite structure that were mirrored in rat and mouse models of the disease (28). This work in Timothy syndrome is proof-of-principle that differentiated iPSC neurons can be used to model at least some types of developmental epilepsies, with the added value of mutations being expressed and realized in their endogenous cellular context. Further study is required to see whether the DS iPSC models are relevant to the same extent.

Conclusion

DS is a catastrophic developmental epilepsy whose seizure pathogenesis remains poorly understood, although several lines of research are developing promising potential explanations for seizures. DS research in many ways reflects the trends in research on other neurodevelopmental diseases, with stem cell technologies providing a novel platform for investigating conditions that had previously been studied only in rodent models. DS research also demonstrates that there is great power in employing multiple model systems to investigate a developmental process. The future of DS research is likely to rely on a marriage of old and new, with different model systems being leveraged for their strengths in order to develop robust theories of pathogenesis. For example, recent advances using zebrafish and fly models of epilepsy may provide deeper insights into epilepsy mechanisms and with that, the development of novel therapeutics. With an array of powerful tools at its disposal, the field stands poised to make substantial progress in uncovering epilepsy mechanisms and moving towards novel therapies to treat a complicated and devastating condition.

References

American Epilepsy Society

Epilepsy Currents Journal
Disclosure of Potential Conflicts of Interest

Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. Identifying information.
 Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. The work under consideration for publication.
 This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. Relevant financial activities outside the submitted work.
 This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (DGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

 Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

 For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. Other relationships
 Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
American Epilepsy Society

Epilepsy Currents Journal

Disclosure of Potential Conflicts of Interest

Section #1 Identifying Information

1. Today’s Date: 2/20/14

2. First Name Ravi Last Name Chopra Degree B.A.

3. Are you the Main Assigned Author? □ Yes □ No

 If no, enter your name as co-author: Ravi Chopra

4. Manuscript/Article Title: Untangling the Dravet Syndrome Seizure Network:

5. The Changing Face of a Rare Genetic Epilepsy

6. Journal Issue you are submitting for: Issue 14.2

Section #2 The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.

** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Payment for manuscript preparation.</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:

Thank you for your assistance.
Epilepsy Currents Editorial Board
Instructions
The purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in four parts.

1. Identifying information.
 Enter your full name. If you are NOT the main contributing author, please check the box “no” and enter the name of the main contributing author in the space that appears. Provide the requested manuscript information.

2. The work under consideration for publication.
 This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking “No” means that you did the work without receiving any financial support from any third party – that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds from a third party to support the work, such as a government granting agency, charitable foundation or commercial sponsor, check “Yes”. Then complete the appropriate boxes to indicate the type of support and whether the payment went to you, or to your institution, or both.

3. Relevant financial activities outside the submitted work.
 This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.

 Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work’s sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.

 For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drugs were provided by a pharmaceutical company, you need only list the pharmaceutical company.

4. Other relationships
 Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.
Section #1 Identifying Information

1. Today’s Date: Feb 20, 2014

2. First Name Lori Last Name Isom Degree PhD

3. Are you the Main Assigned Author? ☑ Yes ☐ No

If no, enter your name as co-author:

4. Manuscript/Article Title: Untangling the Dravet Syndrome Seizure Network: The Changing Face of a Rare Genetic Epilepsy

5. Journal Issue you are submitting for:

Section #2 The Work Under Consideration for Publication
Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)?

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant</td>
<td>☐</td>
<td></td>
<td></td>
<td>NIH</td>
<td></td>
</tr>
<tr>
<td>2. Consulting fee or honorarium</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support for travel to meetings for the study or other purposes</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Payment for writing or reviewing the manuscript</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Provision of writing assistance, medicines, equipment, or administrative support.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Other</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts on this study.
** Use this section to provide any needed explanation.
Section #3 Relevant financial activities outside the submitted work.
Place a check in the appropriate boxes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the “Add” box. You should report relationships that were present during the 36 months prior to submission.

Complete each row by checking “No” or providing the requested information. If you have more than one relationship just add rows to this table.

<table>
<thead>
<tr>
<th>Type of relationship (in alphabetical order)</th>
<th>No</th>
<th>Money Paid to You</th>
<th>Money to Your Institution*</th>
<th>Name of Entity</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Board membership</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consultancy</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Employment</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Expert testimony</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Grants/grants pending</td>
<td>☐</td>
<td></td>
<td></td>
<td>NIH</td>
<td></td>
</tr>
<tr>
<td>6. Payment for lectures including service on speakers bureaus</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Payment for manuscript preparation.</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Patents (planned, pending or issued)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Royalties</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Payment for development of educational presentations</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Stock/stock options</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Travel/accommodations/meeting expenses unrelated to activities listed.**</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Other (err on the side of full disclosure)</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This means money that your institution received for your efforts.
** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section #4 Other relationships
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

☑ No other relationships/conditions/circumstances that present a potential conflict of interest.
☐ Yes, the following relationships/conditions/circumstances are present:

Thank you for your assistance.
Epilepsy Currents Editorial Board